Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(4): 114120, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38625796

RESUMO

Border-associated macrophages (BAMs) are tissue-resident macrophages that reside at the border of the central nervous system (CNS). Since BAMs originate from yolk sac progenitors that do not persist after birth, the means by which this population of cells is maintained is not well understood. Using two-photon microscopy and multiple lineage-tracing strategies, we determine that CCR2+ monocytes are significant contributors to BAM populations following disruptions of CNS homeostasis in adult mice. After BAM depletion, while the residual BAMs possess partial self-repopulation capability, the CCR2+ monocytes are a critical source of the repopulated BAMs. In addition, we demonstrate the existence of CCR2+ monocyte-derived long-lived BAMs in a brain compression model and in a sepsis model after the initial disruption of homeostasis. Our study reveals that the short-lived CCR2+ monocytes transform into long-lived BAM-like cells at the CNS border and subsequently contribute to BAM populations.


Assuntos
Encéfalo , Macrófagos , Monócitos , Receptores CCR2 , Animais , Receptores CCR2/metabolismo , Monócitos/metabolismo , Macrófagos/metabolismo , Camundongos , Encéfalo/patologia , Encéfalo/metabolismo , Camundongos Endogâmicos C57BL , Homeostase
2.
PLoS One ; 19(1): e0295860, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38206902

RESUMO

OBJECTIVE: To examine acute seizure activity and neuronal damage in a neonatal mouse model of inflammation-sensitized hypoxic-ischemic (IS-HI) brain injury utilizing continuous electroencephalography (cEEG) and neurohistology. METHODS: Neonatal mice were exposed to either IS-HI with Escherichia coli lipopolysaccharide (LPS) or HI alone on postnatal (p) day 10 using unilateral carotid artery ligation followed by global hypoxia (n = 10 [5 female, 5 male] for IS-HI, n = 12 [5 female, 7 male] for HI alone). Video cEEG was recorded for the duration of the experiment and analyzed for acute seizure activity and behavior. Brain tissue was stained and scored based on the degree of neuronal injury in the hippocampus, cortex, and thalamus. RESULTS: There was no significant difference in acute seizure activity among mice exposed to IS-HI compared to HI with regards to seizure duration (mean = 63 ± 6 seconds for HI vs mean 62 ± 5 seconds for IS-HI, p = 0.57) nor EEG background activity. Mice exposed to IS-HI had significantly more severe neural tissue damage at p30 as measured by neuropathologic scores (mean = 8 ± 1 vs 23 ± 3, p < 0.0001). INTERPRETATION: In a neonatal mouse model of IS-HI, there was no significant difference in acute seizure activity among mice exposed to IS-HI compared to HI. Mice exposed to IS-HI did show more severe neuropathologic damage at a later age, which may indicate the presence of chronic inflammatory mechanisms of brain injury distinct from acute seizure activity.


Assuntos
Lesões Encefálicas , Hipóxia-Isquemia Encefálica , Animais , Camundongos , Masculino , Feminino , Animais Recém-Nascidos , Hipóxia-Isquemia Encefálica/patologia , Hipóxia/patologia , Convulsões , Inflamação/patologia , Lesões Encefálicas/patologia , Modelos Animais de Doenças , Isquemia/patologia , Encéfalo/patologia
3.
Osteoarthritis Cartilage ; 32(1): 52-65, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37802464

RESUMO

OBJECTIVE: Back pain and radiculopathy caused by disc herniation are major health issues worldwide. While macrophages are key players in disc herniation induced inflammation, their roles and origins in disease progression remain unclear. We aim to study the roles of monocytes and derivatives in a mouse model of disc herniation. METHODS: Using a CCR2-CreER; R26R-EGFP (Ai6) transgenic mouse strain, we fate-mapped C-C chemokine receptor type 2 (CCR2) expressing monocytes and derivatives at disc herniation sites, and employed a CCR2RFP/RFP mouse strain and a CCR2-specific antagonist to study the effects of CCR2+ monocytes on local inflammatory responses, pain level, and disc degeneration by immunostaining, flow cytometry, and histology. RESULTS: CCR2+ monocytes (GFP+) increased at the sites of disc hernia over postoperative day 4, 6, and 9 in CCR2-CreER; Ai6 mice. F4/80+ cells increased, and meanwhile, CD11b+ cells trended downward. Co-localization analysis revealed that both GFP+CD11b+ and GFP+F4/80+ constituted the majority of CD11b+ and F4/80+ cells at disc hernia sites. Fluorescence activated cell sorter purified GFP+ cells exhibited higher cytokine expressions than GFP- cells. Inhibition of CCR2 signaling reduced infiltration of monocytes and macrophages, alleviated pain, maintained disc height, and reduced osteoclast activity in adjacent cortical bone for up to 1 month. CONCLUSION: Our findings suggest that circulating CCR2+ monocytes play important roles in initiating and promoting the local inflammatory responses, pain sensitization, and degenerative changes after disc herniation, and thus may serve as therapeutic targets for disc herniation induced back and leg pain.


Assuntos
Deslocamento do Disco Intervertebral , Radiculopatia , Camundongos , Animais , Monócitos/metabolismo , Receptores de Quimiocinas/metabolismo , Deslocamento do Disco Intervertebral/complicações , Deslocamento do Disco Intervertebral/metabolismo , Camundongos Transgênicos , Dor/metabolismo , Camundongos Endogâmicos C57BL
4.
Mol Neurobiol ; 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37919601

RESUMO

Abnormal phosphorylation of the microtubule-binding protein tau in the brain is a key pathological marker for Alzheimer's disease and additional neurodegenerative tauopathies. However, how hyperphosphorylated tau causes cellular dysfunction or death that underlies neurodegeneration remains an unsolved question critical for the understanding of disease mechanism and the design of efficacious drugs. Using a recombinant hyperphosphorylated tau protein (p-tau) synthesized by the PIMAX approach, we examined how cells responded to the cytotoxic tau and explored means to enhance cellular resistance to tau attack. Upon p-tau uptake, the intracellular calcium levels rose promptly. Gene expression analyses revealed that p-tau potently triggered endoplasmic reticulum (ER) stress, unfolded protein response (UPR), ER stress-associated apoptosis, and pro-inflammation in cells. Proteomics studies showed that p-tau diminished heme oxygenase-1 (HO-1), an ER stress-associated anti-inflammation and anti-oxidative stress regulator, while stimulated the accumulation of MIOS and other proteins. p-Tau-induced ER stress-associated apoptosis and pro-inflammation are ameliorated by apomorphine, a brain-permeable prescription drug widely used to treat Parkinson's disease symptoms, and by overexpression of HO-1. Our results reveal probable cellular functions targeted by hyperphosphorylated tau. Some of these dysfunctions and stress responses have been linked to neurodegeneration in Alzheimer's disease. The observations that the ill effects of p-tau can be mitigated by a small compound and by overexpressing HO-1 that is otherwise diminished in the treated cells inform new directions of Alzheimer's disease drug discovery.

5.
Front Neurol ; 14: 1215876, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37822524

RESUMO

Patients with sickle cell anemia (SCA) have a high incidence of ischemic stroke, but are usually excluded from thrombolytic therapy due to concerns for cerebral hemorrhage. Maladaptation to cerebral ischemia may also contribute to the stroke propensity in SCA. Here we compared post-stroke cortical collateral circulation in transgenic sickle (SS) mice, bone marrow grafting-derived SS-chimera, and wildtype (AA) controls, because collateral circulation is a critical factor for cell survival within the ischemic penumbra. Further, it has been shown that SS mice develop poorer neo-collateral perfusion after limb ischemia. We used the middle cerebral artery (MCA)-targeted photothrombosis model in this study, since it is better tolerated by SS mice and creates a clear infarct core versus peri-infarct area. Compared to AA mice, SS mice showed enlarged infarction and lesser endothelial proliferation after photothrombosis. SS-chimera showed anemia, hypoxia-induced erythrocyte sickling, and attenuated recovery of blood flow in the ipsilateral cortex after photothrombosis. In AA chimera, cerebral blood flow in the border area between MCA and the anterior cerebral artery (ACA) and posterior cerebral artery (PCA) trees improved from 44% of contralateral level after stroke to 78% at 7 d recovery. In contrast, blood flow in the MCA-ACA and MCA-PCA border areas only increased from 35 to 43% at 7 d post-stroke in SS chimera. These findings suggest deficits of post-stroke collateral circulation in SCA. Better understanding of the underpinnings may suggest novel stroke therapies for SCA patients.

6.
bioRxiv ; 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37292976

RESUMO

Background: Abnormal phosphorylation of the microtubule-binding protein tau in the brain is a key pathological marker for Alzheimer's disease and additional neurodegenerative tauopathies. However, how hyperphosphorylated tau causes cellular dysfunction or death that underlie neurodegeneration remains an unsolved question critical for the understanding of disease mechanism and the design of efficacious drugs. Methods: Using a recombinant hyperphosphorylated tau protein (p-tau) synthesized by the PIMAX approach, we examined how cells responded to the cytotoxic tau and explored means to enhance cellular resistance to tau attack. Results: Upon p-tau uptake, the intracellular calcium levels rose promptly. Gene expression analyses revealed that p-tau potently triggered endoplasmic reticulum (ER) stress, Unfolded Protein Response (UPR), ER stress-associated apoptosis, and pro-inflammation in cells. Proteomics studies showed that p-tau diminished heme oxygenase-1 (HO-1), an ER stress associated anti-inflammation and anti-oxidative stress regulator, while stimulated the accumulation of MIOS and other proteins. P-tau-induced ER stress-associated apoptosis and pro-inflammation are ameliorated by apomorphine, a brain-permeable prescription drug widely used to treat Parkinson's disease symptoms, and by overexpression of HO-1. Conclusion: Our results reveal probable cellular functions targeted by hyperphosphorylated tau. Some of these dysfunctions and stress responses have been linked to neurodegeneration in Alzheimer's disease. The observations that the ill effects of p-tau can be mitigated by a small compound and by overexpressing HO-1 that is otherwise diminished in the treated cells inform new directions of Alzheimer's disease drug discovery.

8.
Nat Commun ; 13(1): 7235, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36433940

RESUMO

Heterogeneity of endothelial cell (EC) populations reflects their diverse functions in maintaining tissue's homeostasis. However, their phenotypic, molecular, and functional properties are not entirely mapped. We use the Tie2-CreERT2;Rosa26-tdTomato reporter mouse to trace, profile, and cultivate primary ECs from different organs. As paradigm platform, we use this strategy to study bone marrow endothelial cells (BMECs). Single-cell mRNA sequencing of primary BMECs reveals that their diversity and native molecular signatures is transitorily preserved in an ex vivo culture that conserves key cell-to-cell microenvironment interactions. Macrophages sustain BMEC cellular diversity and expansion and preserve sinusoidal-like BMECs ex vivo. Endomucin expression discriminates BMECs in populations exhibiting mutually exclusive properties and distinct sinusoidal/arterial and tip/stalk signatures. In contrast to arterial-like, sinusoidal-like BMECs are short-lived, form 2D-networks, contribute to in vivo angiogenesis, and support hematopoietic stem/progenitor cells in vitro. This platform can be extended to other organs' ECs to decode mechanistic information and explore therapeutics.


Assuntos
Medula Óssea , Células Endoteliais , Camundongos , Animais , Células Endoteliais/fisiologia , Transcriptoma , Endotélio , Células-Tronco Hematopoéticas/metabolismo
9.
Neurobiol Dis ; 171: 105802, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35753626

RESUMO

ß-thalassemia is associated with multiple hematological and cerebrovascular symptoms linked to a hypercoagulable state that has not been fully replicated in animal models for the development of stroke treatments. Herein we compared the physiological properties and responses to transient cerebral hypoxia-ischemia (tHI) between six-month-old wildtype and heterozygous Th3/+ mice, a model of non-transfusion-dependent ß-thalassemia intermedia (ß-TI). We found that Th3/+ mice developed microcytic anemia, splenomegaly, higher platelet counts, and increased platelet-erythrocyte plus erythrocyte-leukocyte aggregates. Furthermore, Th3/+ mice showed diminished cerebrovascular reactivity (CVR) and cortical oxygen saturation under repetitive hypercapnic challenges. When subjected to a sub-threshold tHI insult, platelets and leukocytes in Th3/+ mice adhered to the cerebrovascular wall or formed aggregates, while their counterparts flew through smoothly in wildtype mice. Subsequently, Th3/+ mice showed increased fibrin deposition around cerebral blood vessels and larger infarction than wildtype mice, especially in female Th3/+ mice. Collectively these results showed that Th3/+ mice mimic key clinical features and a propensity to thromboembolism in ß-TI patients. The hypercoagulable state in Th3/+ mice is likely caused by multiple hematological and CVR anomalies that are similar, but are not identical to those in the mouse model of sickle cell anemia. As such, we suggest that Th3/+ mice are a useful model to study the pathological mechanisms and prophylactic stroke treatments in thalassemia patients.


Assuntos
Hipóxia-Isquemia Encefálica , Acidente Vascular Cerebral , Talassemia beta , Animais , Modelos Animais de Doenças , Feminino , Hipóxia-Isquemia Encefálica/complicações , Camundongos , Acidente Vascular Cerebral/complicações , Talassemia beta/complicações , Talassemia beta/patologia
10.
Theranostics ; 12(2): 512-529, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34976198

RESUMO

Rationale: Monocytes belong to the mononuclear phagocyte system and are immune responders to tissue injury and infection. There were also reports of monocytes transforming to microglia-like cells. Here we explore the roles of monocytes in microglia ontogeny and the pathogenesis of neonatal cerebral hypoxic-ischemic (HI) brain injury in mice. Methods: We used three genetic methods to track the development of monocytes, including CX3CR1GFP/+; CCR2RFP/+ reporter mice, adoptive transfer of GFP+ monocytes, and fate-mapping with CCR2-CreER mice, in neonatal mouse brains with or without lipopolysaccharide (LPS, 0.3 mg/kg)-sensitized Vannucci HI. We also used genetic (CCR2RFP/ RFP, CCR2 knockout) and pharmacological methods (RS102895, a CCR2 antagonist) to test the roles of monocytic influx in LPS/HI brain injury. Results: CCR2+ monocytes entered the late-embryonic brains via choroid plexus, but rapidly became CX3CR1+ amoeboid microglial cells (AMCs). The influx of CCR2+ monocytes declined after birth, but recurred after HI or LPS-sensitized HI (LPS/HI) brain injury, particularly in the hippocampus. The CCR2-CreER-based fate-mapping showed that CCR2+ monocytes became CD68+ TNFα+ macrophages within 4 d after LPS/HI, and maintained as TNFα+ MHCII+ macrophages or persisted as Tmem119+ Sall1+ P2RY12+ ramified microglia for at least five months after injury. Genetic deletion of the chemokine receptor CCR2 markedly diminished monocytic influx, the expression of pro- and anti-inflammatory cytokines, and brain damage. Post-LPS/HI application of RS102895 also reduced inflammatory responses and brain damage, leading to better cognitive functions. Conclusion: These results suggest that monocytes promote acute inflammatory responses and may become pathological microglia long after the neonatal LPS/HI insult. Further, blocking the influx of monocytes may be a potential therapy for neonatal brain injury.


Assuntos
Lesões Encefálicas/patologia , Hipóxia-Isquemia Encefálica/patologia , Microglia/patologia , Monócitos/imunologia , Doenças Neuroinflamatórias/patologia , Transferência Adotiva , Animais , Animais Recém-Nascidos , Movimento Celular , Células Cultivadas , Plexo Corióideo/citologia , Plexo Corióideo/imunologia , Feminino , Inflamação/patologia , Masculino , Camundongos Endogâmicos C57BL , Monócitos/transplante , Doenças Neuroinflamatórias/imunologia , Receptores CCR2/genética , Receptores CCR2/metabolismo
11.
Redox Biol ; 48: 102197, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34826783

RESUMO

Adropin is a highly-conserved peptide that has been shown to preserve endothelial barrier function. Blood-brain barrier (BBB) disruption is a key pathological event in cerebral ischemia. However, the effects of adropin on ischemic stroke outcomes remain unexplored. Hypothesizing that adropin exerts neuroprotective effects by maintaining BBB integrity, we investigated the role of adropin in stroke pathology utilizing loss- and gain-of-function genetic approaches combined with pharmacological treatment with synthetic adropin peptide. Long-term anatomical and functional outcomes were evaluated using histology, MRI, and a battery of sensorimotor and cognitive tests in mice subjected to ischemic stroke. Brain ischemia decreased endogenous adropin levels in the brain and plasma. Adropin treatment or transgenic adropin overexpression robustly reduced brain injury and improved long-term sensorimotor and cognitive function in young and aged mice subjected to ischemic stroke. In contrast, genetic deletion of adropin exacerbated ischemic brain injury, irrespective of sex. Mechanistically, adropin treatment reduced BBB damage, degradation of tight junction proteins, matrix metalloproteinase-9 activity, oxidative stress, and infiltration of neutrophils into the ischemic brain. Adropin significantly increased phosphorylation of endothelial nitric oxide synthase (eNOS), Akt, and ERK1/2. While adropin therapy was remarkably protective in wild-type mice, it failed to reduce brain injury in eNOS-deficient animals, suggesting that eNOS is required for the protective effects of adropin in stroke. These data provide the first causal evidence that adropin exerts neurovascular protection in stroke through an eNOS-dependent mechanism. We identify adropin as a novel neuroprotective peptide with the potential to improve stroke outcomes.

12.
Nat Commun ; 12(1): 5289, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489419

RESUMO

Microglia are brain-resident immune cells with a repertoire of functions in the brain. However, the extent of their interactions with the vasculature and potential regulation of vascular physiology has been insufficiently explored. Here, we document interactions between ramified CX3CR1 + myeloid cell somata and brain capillaries. We confirm that these cells are bona fide microglia by molecular, morphological and ultrastructural approaches. Then, we give a detailed spatio-temporal characterization of these capillary-associated microglia (CAMs) comparing them with parenchymal microglia (PCMs) in their morphological activities including during microglial depletion and repopulation. Molecularly, we identify P2RY12 receptors as a regulator of CAM interactions under the control of released purines from pannexin 1 (PANX1) channels. Furthermore, microglial elimination triggered capillary dilation, blood flow increase, and impaired vasodilation that were recapitulated in P2RY12-/- and PANX1-/- mice suggesting purines released through PANX1 channels play important roles in activating microglial P2RY12 receptors to regulate neurovascular structure and function.


Assuntos
Encéfalo/irrigação sanguínea , Conexinas/genética , Microglia/metabolismo , Células Mieloides/metabolismo , Proteínas do Tecido Nervoso/genética , Receptores Purinérgicos P2Y12/genética , Animais , Encéfalo/citologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Contagem de Células , Circulação Cerebrovascular/fisiologia , Conexinas/deficiência , Eletrodos Implantados , Feminino , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos , Camundongos Knockout , Microglia/citologia , Células Mieloides/citologia , Proteínas do Tecido Nervoso/deficiência , Neuroimagem/instrumentação , Neuroimagem/métodos , Receptores Purinérgicos P2Y12/deficiência , Receptores Purinérgicos P2Y12/metabolismo , Vasodilatação/fisiologia
13.
JCI Insight ; 6(17)2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34324436

RESUMO

The creatine transporter (CrT) maintains brain creatine (Cr) levels, but the effects of its deficiency on energetics adaptation under stress remain unclear. There are also no effective treatments for CrT deficiency, the second most common cause of X-linked intellectual disabilities. Herein, we examined the consequences of CrT deficiency in brain energetics and stress-adaptation responses plus the effects of intranasal Cr supplementation. We found that CrT-deficient (CrT-/y) mice harbored dendritic spine and synaptic dysgenesis. Nurtured newborn CrT-/y mice maintained baseline brain ATP levels, with a trend toward signaling imbalance between the p-AMPK/autophagy and mTOR pathways. Starvation elevated the signaling imbalance and reduced brain ATP levels in P3 CrT-/y mice. Similarly, CrT-/y neurons and P10 CrT-/y mice showed an imbalance between autophagy and mTOR signaling pathways and greater susceptibility to cerebral hypoxia-ischemia and ischemic insults. Notably, intranasal administration of Cr after cerebral ischemia increased the brain Cr/N-acetylaspartate ratio, partially averted the signaling imbalance, and reduced infarct size more potently than intraperitoneal Cr injection. These findings suggest important functions for CrT and Cr in preserving the homeostasis of brain energetics in stress conditions. Moreover, intranasal Cr supplementation may be an effective treatment for congenital CrT deficiency and acute brain injury.


Assuntos
Encefalopatias Metabólicas Congênitas/genética , Encéfalo/metabolismo , Creatina/deficiência , DNA/genética , Proteínas de Membrana Transportadoras/genética , Retardo Mental Ligado ao Cromossomo X/genética , Mutação , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/deficiência , Animais , Animais Recém-Nascidos , Encéfalo/ultraestrutura , Encefalopatias Metabólicas Congênitas/metabolismo , Encefalopatias Metabólicas Congênitas/patologia , Creatina/genética , Creatina/metabolismo , Análise Mutacional de DNA , Modelos Animais de Doenças , Homeostase , Masculino , Proteínas de Membrana Transportadoras/deficiência , Retardo Mental Ligado ao Cromossomo X/metabolismo , Retardo Mental Ligado ao Cromossomo X/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Microscopia Eletrônica , Neurônios/metabolismo , Neurônios/ultraestrutura , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/metabolismo
14.
J Cereb Blood Flow Metab ; 41(12): 3187-3199, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34304622

RESUMO

Multi-parametric photoacoustic microscopy (PAM) has emerged as a promising new technique for high-resolution quantification of hemodynamics and oxygen metabolism in the mouse brain. In this work, we have extended the scope of multi-parametric PAM to longitudinal, cortex-wide, awake-brain imaging with the use of a long-lifetime (24 weeks), wide-field (5 × 7 mm2), light-weight (2 g), dual-transparency (i.e., light and ultrasound) cranial window. Cerebrovascular responses to the window installation were examined in vivo, showing a complete recovery in 18 days. In the 22-week monitoring after the recovery, no dura thickening, skull regrowth, or changes in cerebrovascular structure and function were observed. The promise of this technique was demonstrated by monitoring vascular and metabolic responses of the awake mouse brain to ischemic stroke throughout the acute, subacute, and chronic stages. Side-by-side comparison of the responses in the ipsilateral (injury) and contralateral (control) cortices shows that despite an early recovery of cerebral blood flow and an increase in microvessel density, a long-lasting deficit in cerebral oxygen metabolism was observed throughout the chronic stage in the injured cortex, part of which proceeded to infarction. This longitudinal, functional-metabolic imaging technique opens new opportunities to study the chronic progression and therapeutic responses of neurovascular diseases.


Assuntos
Encéfalo/metabolismo , Circulação Cerebrovascular , AVC Isquêmico/metabolismo , Microscopia , Oxigênio/metabolismo , Técnicas Fotoacústicas , Animais , Encéfalo/fisiopatologia , AVC Isquêmico/fisiopatologia , Masculino , Camundongos
15.
J Vis Exp ; (172)2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34152310

RESUMO

An ideal thromboembolic stroke model requires certain properties, including relatively simple surgical procedures with low mortality, a consistent infarction size and location, precipitation of platelet:fibrin intermixed blood clots similar to those in patients, and an adequate sensitivity to fibrinolytic treatment. The rose bengal (RB) dye-based photothrombotic stroke model meets the first two requirements but is highly refractory to tPA-mediated lytic treatment, presumably due to its platelet-rich, but fibrin-poor clot composition. We reason that combination of RB dye (50 mg/kg) and a sub-thrombotic dose of thrombin (80 U/kg) for photoactivation aimed at the proximal branch of middle cerebral artery (MCA) may produce fibrin-enriched and tPA-sensitive clots. Indeed, the thrombin and RB (T+RB)-combined photothrombosis model triggered mixed platelet:fibrin blood clots, as shown by immunostaining and immunoblots, and maintained consistent infarct sizes and locations plus low mortality. Moreover, intravenous injection of tPA (Alteplase, 10 mg/kg) within 2 h post-photoactivation significantly decreased the infarct size in T+RB photothrombosis. Thus, the thrombin-enhanced photothrombotic stroke model may be a useful experimental model to test novel thrombolytic therapies.


Assuntos
Acidente Vascular Cerebral , Ativador de Plasminogênio Tecidual , Fibrina , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico , Humanos , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/etiologia , Terapia Trombolítica , Ativador de Plasminogênio Tecidual/uso terapêutico
16.
Sci Rep ; 11(1): 5533, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692398

RESUMO

Stroke is a multiphasic process involving a direct ischemic brain injury which is then exacerbated by the influx of immune cells into the brain tissue. Activation of brain endothelial cells leads to the expression of adhesion molecules such vascular cell adhesion molecule 1 (VCAM-1) on endothelial cells, further increasing leukocyte recruitment. Polymerase δ-interacting protein 2 (Poldip2) promotes brain vascular inflammation and leukocyte recruitment via unknown mechanisms. This study aimed to define the role of Poldip2 in mediating vascular inflammation and leukocyte recruitment following cerebral ischemia. Cerebral ischemia was induced in Poldip2+/+ and Poldip2+/- mice and brains were isolated and processed for flow cytometry or RT-PCR. Cultured rat brain microvascular endothelial cells were used to investigate the effect of Poldip2 depletion on focal adhesion kinase (FAK)-mediated VCAM-1 induction. Poldip2 depletion in vivo attenuated the infiltration of myeloid cells, inflammatory monocytes/macrophages and decreased the induction of adhesion molecules. Focusing on VCAM-1, we demonstrated mechanistically that FAK activation was a critical intermediary in Poldip2-mediated VCAM-1 induction. In conclusion, Poldip2 is an important mediator of endothelial dysfunction and leukocyte recruitment. Thus, Poldip2 could be a therapeutic target to improve morbidity following ischemic stroke.


Assuntos
Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Quinase 1 de Adesão Focal/metabolismo , AVC Isquêmico/metabolismo , Leucócitos/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Nucleares/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Animais , Isquemia Encefálica/genética , Quinase 1 de Adesão Focal/genética , AVC Isquêmico/genética , Camundongos , Camundongos Mutantes , Proteínas Mitocondriais/genética , Proteínas Nucleares/genética , Molécula 1 de Adesão de Célula Vascular/genética
17.
Neurobiol Dis ; 148: 105200, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33248237

RESUMO

Hypoxia-inducible factor-1α (HIF1α) is a major regulator of cellular adaptation to hypoxia and oxidative stress, and recent advances of prolyl-4-hydroxylase (P4H) inhibitors have produced powerful tools to stabilize HIF1α for clinical applications. However, whether HIF1α provokes or resists neonatal hypoxic-ischemic (HI) brain injury has not been established in previous studies. We hypothesize that systemic and brain-targeted HIF1α stabilization may have divergent effects. To test this notion, herein we compared the effects of GSK360A, a potent P4H inhibitor, in in-vitro oxygen-glucose deprivation (OGD) and in in-vivo neonatal HI via intracerebroventricular (ICV), intraperitoneal (IP), and intranasal (IN) drug-application routes. We found that GSK360A increased the erythropoietin (EPO), heme oxygenase-1 (HO1) and glucose transporter 1 (Glut1) transcripts, all HIF1α target-genes, and promoted the survival of neurons and oligodendrocytes after OGD. Neonatal HI insult stabilized HIF1α in the ipsilateral hemisphere for up to 24 h, and either ICV or IN delivery of GSK360A after HI increased the HIF1α target-gene transcripts and decreased brain damage. In contrast, IP-injection of GSK360A failed to reduce HI brain damage, but elevated the risk of mortality at high doses, which may relate to an increase of the kidney and plasma EPO, leukocytosis, and abundant vascular endothelial growth factor (VEGF) mRNAs in the brain. These results suggest that brain-targeted HIF1α-stabilization is a potential treatment of neonatal HI brain injury, while systemic P4H-inhibition may provoke unwanted adverse effects.


Assuntos
Inibidores Enzimáticos/farmacologia , Glicina/análogos & derivados , Subunidade alfa do Fator 1 Induzível por Hipóxia/efeitos dos fármacos , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Hipóxia-Isquemia Encefálica/metabolismo , Neurônios/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Quinolonas/farmacologia , Administração Intranasal , Animais , Animais Recém-Nascidos , Sobrevivência Celular/efeitos dos fármacos , Eritropoetina/genética , Transportador de Glucose Tipo 1/efeitos dos fármacos , Transportador de Glucose Tipo 1/genética , Glicina/farmacologia , Heme Oxigenase (Desciclizante)/efeitos dos fármacos , Heme Oxigenase (Desciclizante)/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Injeções Intraperitoneais , Injeções Intraventriculares , Neurônios/metabolismo , Oligodendroglia/metabolismo , Ratos
18.
J Neurosci ; 40(49): 9386-9400, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33127853

RESUMO

Growing evidence suggests that early-life interactions among genetic, immune, and environment factors may modulate neurodevelopment and cause psycho-cognitive deficits. Maternal immune activation (MIA) induces autism-like behaviors in offspring, but how it interplays with perinatal brain injury (especially birth asphyxia or hypoxia ischemia [HI]) is unclear. Herein we compared the effects of MIA (injection of poly[I:C] to dam at gestational day 12.5), HI at postnatal day 10, and the combined MIA/HI insult in murine offspring of both sexes. We found that MIA induced autistic-like behaviors without microglial activation but amplified post-HI NFκB signaling, pro-inflammatory responses, and brain injury in offspring. Conversely, HI neither provoked autistic-like behaviors nor concealed them in the MIA offspring. Instead, the dual MIA/HI insult added autistic-like behaviors with diminished synaptic density and reduction of autism-related PSD-95 and Homer-1 in the hippocampus, which were missing in the singular MIA or HI insult. Further, the dual MIA/HI insult enhanced the brain influx of Otx2-positive monocytes that are associated with an increase of perineuronal net-enwrapped parvalbumin neurons. Using CCR2-CreER mice to distinguish monocytes from the resident microglia, we found that the monocytic infiltrates gradually adopted a ramified morphology and expressed the microglial signature genes (Tmem119, P2RY12, and Sall1) in post-MIA/HI brains, with some continuing to express the proinflammatory cytokine TNFα. Finally, genetic or pharmacological obstruction of monocytic influx significantly reduced perineuronal net-enwrapped parvalbumin neurons and autistic-like behaviors in MIA/HI offspring. Together, these results suggest a pathologic role of monocytes in the two-hit (immune plus neonatal HI) model of neurodevelopmental defects.SIGNIFICANCE STATEMENT In autism spectrum disorders (ASDs), prenatal infection or maternal immune activation (MIA) may act as a primer for multiple genetic and environmental factors to impair neurodevelopment. This study examined whether MIA cooperates with neonatal cerebral hypoxia ischemia to promote ASD-like aberrations in mice using a novel two-hit model. It was shown that the combination of MIA and neonatal hypoxia ischemia produces autistic-like behaviors in the offspring, and has synergistic effects in inducing neuroinflammation, monocytic infiltrates, synaptic defects, and perineuronal nets. Furthermore, genetic or pharmacological intervention of the MCP1-CCR2 chemoattractant pathway markedly reduced monocytic infiltrates, perineuronal nets, and autistic-like behaviors. These results suggest reciprocal escalation of immune and neonatal brain injury in a subset of ASD that may benefit from monocyte-targeted treatments.


Assuntos
Transtorno Autístico/imunologia , Transtorno Autístico/psicologia , Comportamento Animal , Deficiências do Desenvolvimento/imunologia , Deficiências do Desenvolvimento/psicologia , Monócitos/imunologia , Animais , Isquemia Encefálica/genética , Isquemia Encefálica/psicologia , Feminino , Ativação de Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/imunologia , NF-kappa B , Parvalbuminas/genética , Poli I-C , Densidade Pós-Sináptica , Gravidez , Transdução de Sinais , Comportamento Social
19.
Sci Adv ; 6(35): eabb2119, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32923636

RESUMO

Whether monocytes contribute to the brain microglial pool in development or after brain injury remains contentious. To address this issue, we generated CCR2-CreER mice to track monocyte derivatives in a tamoxifen-inducible manner. This method labeled Ly6Chi and Ly6Clo monocytes after tamoxifen dosing and detected a surge of perivascular macrophages before blood-brain barrier breakdown in adult stroke. When dosed by tamoxifen at embryonic day 17 (E17), this method captured fetal hematopoietic cells at E18, subdural Ki67+ ameboid cells at postnatal day 2 (P2), and perivascular microglia, leptomeningeal macrophages, and Iba1+Tmem119+P2RY12+ parenchymal microglia in selective brain regions at P24. Furthermore, this fate mapping strategy revealed an acute influx of monocytes after neonatal stroke, which gradually transformed into a ramified morphology and expressed microglial marker genes (Sall1, Tmem119, and P2RY12) for at least 62 days after injury. These results suggest an underappreciated level of monocyte-to-microglia transition in development and after neonatal stroke.


Assuntos
Microglia , Acidente Vascular Cerebral , Animais , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Monócitos/metabolismo , Receptores CCR2/genética , Receptores CCR2/metabolismo , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo , Tamoxifeno
20.
Blood Adv ; 4(7): 1222-1231, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32227212

RESUMO

The Rose Bengal (RB) dye-based photothrombotic stroke (PTS) model has many methodological advantages including consistent location and size of infarct, low mortality, and relatively simple surgical procedures. However, the standard PTS has the caveat of poor responses to tissue-type plasminogen activator (tPA)-mediated lytic treatment, likely as a result of the platelet-rich, fibrin-poor content of the blood clots. Here we tested whether the admixture of thrombin (80 U/kg) and RB dye (50 mg/kg) in the proximal middle cerebral artery (MCA)-targeted PTS will modify the clot composition and elevate the responsiveness to tPA-lytic treatment (Alteplase, 10 mg/kg). Indeed, intravital imaging, immunostaining, and immunoblot analyses showed less-compacted platelet aggregates with a higher fibrin content in the modified thrombin (T) plus RB photothrombotic stroke (T+RB-PTS) model compared with the standard RB-PTS-induced clots. Both RB-PTS and T+RB-PTS showed steady recovery of cerebral blood flow (CBF) in the ischemic border from 1 day after infarction, but without recanalization of the proximal MCA branch. Intravital imaging showed high potency of restoring the blood flow by tPA after single vessel-targeted T+RB-PTS. Further, although intravenous tPA failed to restore CBF or attenuate infarction in RB-PTS, it conferred 25% recovery of CBF and 55% reduction of the infarct size in T+RB-PTS (P < .05) if tPA was administered within 2 hours postphotoactivation. These results suggest that T+RB-PTS produces mixed platelet:fibrin clots closer to the clinical thrombus composition and enhanced the sensitivity to tPA-lytic treatment. As such, the modified photothrombosis may be a useful tool to develop more effective thrombolytic therapies of cerebral ischemia.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Animais , Fibrina , Camundongos , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/etiologia , Terapia Trombolítica , Ativador de Plasminogênio Tecidual/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...